Latent Tuberculosis Infection

This is a PDF version of the following document:
Module 4: Co-Occurring Conditions
Lesson 1: Latent Tuberculosis Infection

You can always find the most up-to-date version of this document at https://www.hiv.uw.edu/go/co-occurring-conditions/latent-tuberculosis/core-concept/all.

Background

Epidemiology of Tuberculosis in the United States

The incidence of tuberculosis in the United States has substantially decreased since the early 1990s (Figure 1), but cases continue at a significant rate, with 7,882 cases reported in 2021.[1] The case rate is especially high among persons from individuals in correctional facilities, persons experiencing homelessness, persons who use drugs, and individuals with HIV.[1,2] In recent years, most tuberculosis cases in the United States were among persons who were non-United States-born (71% of all cases in 2021), with an incidence rate approximately 16 times higher than among persons born in the United States (Figure 2).[1] Among racial/ethnic groups, rates of tuberculosis in the United States have occurred at the highest rates among persons who are Native Hawaiian/Other Pacific Islander and Asian (Figure 3).[1]

Epidemiology of Tuberculosis in Persons with HIV

In the late 1980s and early 1990s, HIV contributed to the significant increase of tuberculosis in the United States (48% of tuberculosis cases occurred in persons with HIV coinfection in 1993).[3] In the last 10 years, the overall number (Figure 4) and proportion (Figure 5) of tuberculosis cases involving persons who had HIV coinfection has been substantially lower than in the 1990s.[1] For the year 2021, the CDC reported that HIV status was known for approximately 90% of the persons diagnosed with tuberculosis in the United States, and among those with known HIV status, 4.2% had HIV coinfection; a total of 293 cases of tuberculosis in persons with HIV were identified in 2021.[1] Tuberculosis continues to cause significant morbidity and mortality among people with HIV in the United States.[4]

Progression from Latent to Active TB

The development of tuberculosis can occur in the setting of recent exposure to Mycobacterium tuberculosis (primary or active disease) or with reactivation of latent tuberculosis infection (LTBI).[5,6] The development of tuberculosis disease is based on complex interactions between host immune status and the bacillary load; in persons with HIV, this balance is impacted both by HIV-related immunosuppression and restoration of immune function by antiretroviral therapy (Figure 6).[5] The risk of progression from LTBI to active disease is markedly increased in individuals infected with HIV (3 to 16% per year) compared with those without HIV (5 to 10% lifetime risk).[7,8,9] The increased risk of LTBI reactivation begins soon after acquisition of HIV.[10] Investigators have identified several comorbidities in addition to HIV that contribute to the risk of developing active disease, including diabetes, malnutrition, low body weight, smoking, lung disease, injection drug use, and recent or current use of immunosuppressant medications.[11]
Prevention of Tuberculosis in Persons with HIV

Combination antiretroviral therapy markedly decreases the risk of developing active tuberculosis, with greater declines occurring with more substantial increases in CD4 cell counts and longer duration of antiretroviral therapy. Nevertheless, the risk of incident tuberculosis remains higher among those with HIV compared to those without HIV, even after CD4 recovery on antiretroviral therapy, or initiation of antiretroviral therapy at higher CD4 cell counts. Individuals with HIV who have positive LTBI testing, either tuberculin skin test (TST) or interferon gamma release assay (IGRA), are associated with increased risk of progression to active tuberculosis.
Rationale and Indications for LTBI Screening

Rationale for LTBI Screening

Multiple factors underscore the rationale for LTBI screening in persons with HIV, including increased risk of progression from LTBI to tuberculosis, poor outcomes associated with active tuberculosis disease, widespread availability of LTBI screening tests, and effective treatment for LTBI to prevent progression to active tuberculosis disease. Among persons with HIV who have LTBI, treatment for LTBI significantly decreases their risk of developing active tuberculosis and reduces mortality.[18,19,20] For all these reasons, individuals with HIV should undergo LTBI screening and be offered treatment if found to have LTBI.[8,21]

Indication and Timing of LTBI Screening

The Adult and Adolescent OI Guidelines recommend screening for LTBI at the time of initial HIV diagnosis or entry into medical care, regardless of the presence or absence of other epidemiologic tuberculosis risk factors.[8,22] Despite this recommendation, LTBI screening of persons with HIV in the United States has been variable, with reports of adherence to routine screening practices ranging from 47 to 79%.[23,24,25,26] In addition to LTBI screening at entry to care, recent contact with a known tuberculosis case should prompt LTBI screening, as well as evaluation for active disease and empiric therapy for latent tuberculosis (if there is no evidence of active tuberculosis).

Repeat LTBI Screening

Individuals with advanced HIV disease (CD4 count less than 200 cells/mm3) with initially negative LTBI testing should have repeat testing after they initiate antiretroviral therapy and reach a CD4 count of at least 200 cells/mm3, due to the possibility of false-negative results in the setting of advanced immunosuppression.[8] Yearly repeat testing for LTBI is recommended only in situations when individuals with HIV have high risk for ongoing or repeat exposure to persons with active tuberculosis.[8]
Methods Used to Test for Latent Tuberculosis

There are two primary methods for detection of LTBI: tuberculin skin test (TST) and interferon gamma release assay (IGRA).[27,28] Both methods are indirect measures of tuberculosis infection that, for a positive test result, require infection with M. tuberculosis and the host’s ability to mount a T-cell mediated response. Tuberculin skin testing is an in vivo skin test, whereas IGRA is an in vitro blood-based approach.[29] Routine dual testing with both the tuberculin skin test and IGRA is not recommended, though CDC guidelines recommend that repeat testing (with the other test) may be appropriate when the initial test was negative in persons at high risk for tuberculosis infection.[25] Importantly, a positive tuberculin skin test or IGRA does not distinguish between LTBI and active disease, nor does negative LTBI testing rule out active tuberculosis. After infection with M. tuberculosis, the TST and IGRA tests may not generate a positive result for 2 to 10 weeks.

Tuberculin Skin Test

The Mantoux tuberculin skin testing method consists of giving an intradermal injection of 5 tuberculin units of purified protein derivative (PPD) that contains M. tuberculosis antigens (Figure 7) and then evaluating the cutaneous induration 48 to 72 hours later.[27] In persons infected with M. tuberculosis (past or current), intradermal injection of the PPD will stimulate a T-lymphocyte mediated type IV delayed hypersensitivity response, leading to induration of the site of injection within 48 to 72 hours.[29] The transverse diameter of induration (not erythema) should be measured at a follow-up visit 48 to 72 hours after placement of the PPD and should be performed by an individual trained in reading a tuberculin skin test (Figure 8).[27]

- **Criteria for Positive Tuberculin Skin Test:** For individuals with HIV, induration of 5 mm or greater is considered a positive test.[22] Following exposure to M. tuberculosis, the tuberculin skin test conversion to positive typically occurs within 8 weeks.[30] The sensitivity of tuberculin skin test for the diagnosis of LTBI is estimated at 45 to 85% and specificity at approximately 85%.[25,31,32] Persons with prior treatment of tuberculosis (latent or active) typically have a persistently positive tuberculin skin test.
- **False-Positive Tuberculin Skin Test:** Previous exposure to nontuberculous mycobacteria, as well as immunization with bacille Calmette–Guérin (BCG), can cause a false-positive tuberculin skin test.[28] Receipt of BCG in infancy is thought to have a relatively minimal effect on tuberculin skin testing, especially if at least 10 years have elapsed after administration.[33]
- **False-Negative Tuberculin Skin Test:** False-negative tests can occur in the setting of advanced HIV disease, malnutrition, active tuberculosis or early in the window period after recent M. tuberculosis infection.[28]

Interferon Gamma Release Assay (IGRA)

For the diagnosis of LTBI, the two most commonly used FDA-approved IGRA in the United States are the QuantiFERON-TB Gold Plus (QFT-Plus) assay and the T-SPOT.TB (T-SPOT) assay (Figure 9).[25] The QFT-Plus and T-SPOT are in vitro tests that measure the release of interferon gamma by T-lymphocytes after stimulation to a peptide antigen cocktail that simulates two M. tuberculosis-specific antigens: early secreted antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10).[28,34,35] The ESAT-6 and CFP-10 mycobacterial antigens are absent from all mycobacterial strains used in BCG vaccines and from most nontuberculous mycobacteria, except for M. marinum, M. kansasi, and M. szulgai.[28] Hence, the IGRA are less likely to show cross-reactivity in persons who have received BCG vaccination and/or had prior infection with non-tuberculous mycobacteria.

- **QuantiFERON-TB Gold Plus (QFT-Plus):** This test has replaced the previously used QuantiFERON-TB Gold test and has the advantage of measuring both CD4 and CD8 T-lymphocyte responses.[36,37,38] To perform the test, blood is drawn into 4 specialized collection tubes: (1) Nil (negative control), (2) mitogen (positive control), (3) TB1 (primarily detects CD4 T cell response), and (4) TB2 (optimized for detection of CD4 and CD8 T cell responses) (Figure 10).[36,39,40,41] The
interferon gamma response is quantified in international units (IU) per millimeter, and test results are reported as positive, negative, or indeterminate (Figure 11).[39] Reversion from a positive to negative test result can occur,[42,43,44] but this tends to occur when the initial test is close to the cutoff threshold.[28,36,40]

- **T-SPOT.TB (T-SPOT):** The T-SPOT is an enzyme-linked immunosorbent spot (ELISPOT) assay that quantitates the response of mononuclear T-cells to *M. tuberculosis* antigens. First, a blood sample is obtained, and peripheral blood mononuclear cells are separated from whole blood and counted. The peripheral blood mononuclear cells are then placed into microtiter wells pre-coated with high-affinity antibodies to interferon gamma; four different panels are set up by coincubating with either *M. tuberculosis* ESAT-6 antigens (Panel A), *M. tuberculosis* CFP10 antigens (Panel B), positive control that contains phytohemagglutinin (Panel C), or Nil negative control (Panel D).[45] The number of T-cells producing interferon gamma (spot-forming cells) are then counted (Figure 12). The test results are categorized as either positive, borderline, negative, or indeterminate (Figure 13).[25] In a meta-analysis of IGRA studies in persons with HIV, the pooled sensitivity was 72% for T-SPOT and 61% for QFT.[46]

Performance of IGRA Tests

The presence of immunosuppression decreases the sensitivity of IGRA, but the impact is relatively less than on the tuberculin skin test.[28] In addition, the IGRA tests have greater specificity than the tuberculin skin test, and these tests are not impacted by prior receipt of BCG vaccine.[8] Although IGRA testing requires a blood draw, unlike tuberculin skin testing, it does not require a follow-up visit for test result reading. In addition, IGRA cutoffs are not stratified by risk-group, including HIV status. Persons with prior treatment of LTBI or active tuberculosis (and a prior positive IGRA) usually have persistently positive IGRA. Similar to TST, the IGRA tests may be negative early in the window period after recent *M. tuberculosis* infection.
Recommended LTBI Testing in Persons with HIV

Choice of Test Method For LTBI Screening

Use of either tuberculin skin test or IGRA is appropriate for LTBI screening in persons with HIV.[8,25,27] The correlation between positive tuberculin skin test and IGRA in persons with HIV is poor to moderate.[17,46,47,48] In recent years, many clinics have predominantly used IGRAs because of several negative aspects of tuberculin skin testing, including the requirement for a second visit to read the test, false-positive results in people immunized with BCG vaccine, and lower sensitivity in persons with advanced immunosuppression. Some experts acknowledge the benefit of performing a second LTBI diagnostic test (e.g., a tuberculin skin test after a negative IGRA result or vice versa) as a strategy to increase sensitivity in the setting of an individual likely to be infected and at high risk of progression to active disease. From a practical standpoint, the decision regarding which test to use is often based on a combination of the availability of the test, trained staff, lab capability, and likelihood of patient follow-up for a second visit to read a tuberculin skin test.

LTBI TESTING IN PERSONS WITH HIV

The Adult and Adolescent OI Guidelines recommendations regarding testing for LTBI in persons with HIV are summarized as follows:[8]

- All persons with HIV should undergo testing for LTBI at the time of HIV diagnosis, regardless of their epidemiological risk of TB exposure.
- The tuberculin skin test or IGRA can be used as the screening method for LTBI, and the decision for which one to use may be based on the likelihood of patient follow-up for reading a tuberculin skin test and access to laboratory testing for IGRAs.
- Annual testing for LTBI is recommended for persons with HIV who are at high risk for repeated or ongoing exposure to persons with active TB.
- Persons with HIV and advanced immunosuppression (CD4 count less than 200 cells/mm3) who have a negative tuberculin skin test result should undergo repeat testing for latent tuberculosis infection after they start on antiretroviral therapy and have an increase in CD4 count to 200 cells/mm3 or greater.
- The routine use of both tuberculin skin test and IGRAs to screen for LTBI is not routinely recommended, though some experts recommend dual testing to increase the sensitivity in individuals who have a high likelihood of having infection with \textit{M. tuberculosis} and a high risk of progression to active disease.
- All persons with a positive tuberculin skin test or IGRA should be evaluated for the possibility of active TB disease.
Evaluation of Persons with a Positive LTBI Screening Test

Any individual with HIV who has a new positive LTBI screening test should undergo tuberculosis symptom screening and chest radiography to exclude active tuberculosis disease.\[23\] A meta-analysis of individual participant data of more than 8,000 persons with HIV found that having at least one positive symptom in a 4-symptom tuberculosis screen (cough, fever, weight loss, or night sweats) has a sensitivity of 78.9%, a specificity of 49.6%, and negative predictive value of 97.7% (at a 5% prevalence) to identify those with culture-confirmed pulmonary tuberculosis.\[49\] A more recent systematic review and meta-analysis found this 4-symptom tuberculosis screen had a lower pooled sensitivity, but higher specificity, when comparing people with HIV on antiretroviral therapy versus those not on antiretroviral therapy.\[50\] Sputum examination, including acid-fast smear microscopy and culture, is indicated for those with either an abnormal chest radiograph or a positive symptom screen (even if their chest radiograph is negative).\[51\] The Adult and Adolescent OI Guidelines recommend that in a low-burden setting such as in the United States, routine use of sputum culture to screen for tuberculosis in asymptomatic individuals with a negative chest radiograph is not considered cost-effective.\[8\]
Management of LTBI in Persons with HIV

Indications for LTBI Treatment

A positive tuberculin skin test or IGRA is associated with a significantly increased risk of developing tuberculosis disease.[17, 47, 48] The risk of progression to active tuberculosis disease is even higher among recent LTBI test converters.[47, 52, 53] Some studies indicate a positive IGRA is a stronger predictor than a positive tuberculin skin test for the risk of developing tuberculosis disease.[54, 55] Note that a history of BCG vaccination should not affect the decision about whether to treat LTBI in persons with HIV.[8]

- A new positive screening test (tuberculin skin test or IGRA) for LTBI with no evidence of active TB disease, and no prior history of treatment for either active disease or LTBI.
- Close contact with a person who has infectious tuberculosis, irrespective of LTBI test result.

Regimens for LTBI Treatment

The following summarizes recommendations for the preferred and alternative regimens for the treatment of LTBI in adults with HIV (Table 1).[8, 56] The choice for the LTBI regimen should strongly consider the individual’s antiretroviral regimen.[56] Note: all regimens are taken orally, and when isoniazid is given, concomitant pyridoxine (vitamin B6) is prescribed to prevent isoniazid-induced peripheral neuropathy.

Preferred Therapies for LTBI

- **3HP: Isoniazid plus Rifapentine Weekly for 3 Months (AI):** This 3-month oral regimen consists of weekly isoniazid (15 mg/kg, maximum dose of 900 mg) plus rifapentine (weight-based dosing, maximum dose of 900 mg) plus pyridoxine 50 mg weekly.[8, 21, 56, 57] A total of 12 doses are given. The 3HP designation derives from the 3 months duration using isoniazid (INH) and rifapentine (RPT). The 3HP regimen should only be used in individuals who have suppressed HIV RNA levels while taking an antiretroviral regimen that contains one of the following anchor drugs: efavirenz, raltegravir, or dolutegravir (once daily dosing). In addition, the use of tenofovir alafenamide with rifapentine is not recommended, unless the benefits outweigh the risks. The 3HP regimen has efficacy equal to standard isoniazid monotherapy, with the added benefit of likely improved adherence and completion rates due to a shorter duration.[57, 58, 59, 60] A phase 4, randomized clinical trial conducted in the United States compared self-administered 3HP therapy versus directly observed therapy (DOT) and demonstrated self-administration was non-inferior to DOT.[61]

- **3HR: Isoniazid plus Rifampin Daily for 3 Months (AI):** This 3-month oral regimen consists of daily isoniazid (300 mg once daily) plus rifampin (600 mg once daily) plus pyridoxine (25 to 50 mg once daily to prevent isoniazid-induced peripheral neuropathy). This regimen is referred to as 3HR due to the 3-month duration using isoniazid (INH) and rifampin (RIF). Several studies involving adults and children who were seronegative for HIV demonstrated 3HR was comparable to 6 months or longer of daily isoniazid, in terms of decreasing the risk of progression to TB disease, risk of hepatotoxicity, and drug toxicity causing treatment discontinuation.[62, 63, 64, 65] In studies specifically for individuals with HIV, there was no significant difference in rates of developing TB disease among those taking 3HR compared to those taking 6 months or longer of daily isoniazid.[66, 67, 68] The use of rifampin is not recommended for use in persons receiving an antiretroviral regimen that includes a protease inhibitor, doravirine, etravirine, rilpivirine, cabotegravir, bictegravir, or elvitegravir-cobicistat.[8, 56] If dolutegravir is used in combination with rifampin, the dose should be increased to 50 mg twice daily. Raltegravir, when coadministered with rifampin, should be increased to 800 mg twice daily.

Alternative Therapy for LTBI

- **6H or 9H: Isoniazid for 6 or 9 Months (AI):** These standard-length oral treatments for LTBI in
persons with HIV consist of isoniazid 300 mg daily, with pyridoxine 25-50 mg daily, for 6 or 9 months.[8,56] These regimens are referred to as 6H and 9H (6 or 9 months of INH). These regimens are generally well tolerated and isoniazid does not cause problematic drug interactions with antiretroviral medication. These regimens, however, are no longer rated as preferred treatment for LTBI because completion rates are lower than with shorter-course LTBI regimens.[69,70]

- **4R: Rifampin for 4 Months (BI):** This short-course, 4-month oral regimen, which consists of rifampin 600 mg daily, is referred to as 4R, based on 4 months of rifampin (RIF).[8,56,71] In a recent large international open-label clinical trial that enrolled persons with and without HIV, investigators demonstrated 4 months of rifampin was noninferior to 9 months of isoniazid for the treatment of LTBI.[72] Furthermore, the rifampin regimen cohort had higher rates of treatment completion and fewer adverse effects.[72] Among all study participants, only 4% had HIV.[72] This regimen is an alternative regimen because of minimal data in persons with HIV and potential drug interactions with rifampin.

- **1HP: Isoniazid plus Rifapentine Daily for 1 month (BI):** This short-course oral regimen, which is an alternative regimen, consists of isoniazid 300 mg daily plus daily weight-based rifapentine (maximum 600 mg), with pyridoxine 25 to 50 mg daily to prevent peripheral neuropathy.[56] The 1-month regimen of daily isoniazid plus daily rifapentine is referred to as 1HP (1 month, INH, RPT). In the BRIEF-TB/A5279 trial, a short-course 1-month regimen of daily isoniazid plus rifapentine was noninferior to 9 months of isoniazid alone in preventing tuberculosis in persons with HIV who were taking efavirenz- or nevirapine-based antiretroviral therapy, with fewer adverse events, and higher completion rates.[73] This study was conducted in areas where TB is highly endemic, and these findings possibly may not be applicable to lower TB endemic regions, such as the United States.

Key Drug Interactions

The following summarizes key drug interactions that occur between LTBI medications and antiretroviral medications.

- **Isoniazid:** Few drug interactions occur between isoniazid and antiretroviral medications.[8,56] When using isoniazid, any antiretroviral regimen can be used, and no dose adjustments are required.

- **Rifampin:** The use of rifampin is not recommended for use in persons receiving any of the following antiretroviral medications: doravirine, etravirine, rilpivirine, bictegravir, cabotegravir, elvitegravir-cobicistat, or any protease inhibitor.[8,56] If dolutegravir is used in combination with rifampin, the dose should be increased to 50 mg twice daily. Raltegravir, when coadministered with rifampin, should be increased to 800 mg twice daily.

- **Rifapentine:** The antiretroviral drug interactions that occur with rifapentine are impacted by whether rifapentine is given weekly or daily.
 - With the weekly use of higher-dose rifapentine in the 3HP regimen, the limited antiretroviral regimen anchor drug options include efavirenz 600 mg once daily, raltegravir 400 mg twice daily, or dolutegravir 50 mg once daily (for those in whom once-daily dolutegravir is appropriate).[8,56] These anchor drugs should be used only in combination with the backbone drugs tenofovir DF-emtricitabine or abacavir-lamivudine.[8,56] When 3HP was given to 60 adults with HIV who were taking once-daily dolutegravir as part of their antiretroviral regimen, suppressed HIV RNA levels were maintained, despite a 50 to 60% reduction in dolutegravir serum trough levels.[74] Concurrent use of tenofovir alafenamide and rifapentine is not recommended unless the benefit outweighs the risks.[8,21,56,57] The antiretroviral regimen bictegravir-tenofovir alafenamide-emtricitabine should be avoided with rifapentine due to reduced plasma concentrations of bictegravir.[75]
 - With the use of daily rifapentine in the 1HP regimen, the only recommended antiretroviral regimens are efavirenz 600 mg daily in combination with either tenofovir DF-emtricitabine or abacavir-lamivudine.[8] Studies are ongoing regarding pharmacokinetic (PK) and safety with coadministration of daily rifapentine with dolutegravir.

Exposure to Drug-Resistant Tuberculosis

Page 10/38
In the situation where a patient has evidence of LTBI and a history of exposure to a person with drug-resistant tuberculosis, the clinician should consult with a tuberculosis expert and public health authorities to determine an appropriate regimen for the treatment of LTBI.[8]

Medication-Related Adverse Effects

Individuals on LTBI therapy should undergo clinical monitoring on a monthly basis. Isoniazid is associated with an increased risk of hepatitis, particularly in patients with older age, alcohol use, and pregnancy.[77] In addition, they should receive education on the signs and symptoms of hepatitis (jaundice, abdominal discomfort, nausea and vomiting) and be advised to promptly stop isoniazid and report their symptoms to their provider if they occur. Baseline hepatic aminotransferase levels should be obtained. Individuals at increased risk of hepatotoxicity, including those with abnormal baseline tests, persons who are pregnant, persons with hepatitis B or C coinfection, or those receiving antiretroviral therapy, should have routine lab monitoring during treatment with isoniazid.[8] The Adult and Adolescent OI Guidelines recommend withholding isoniazid if the hepatic aminotransferase level exceeds three times the upper limit of normal (with associated symptoms) or five times the upper limit of normal (with or without associated symptoms).[8] A 2-month short course regimen of rifampin and pyrazinamide has been studied, but this regimen has an unacceptably high risk of causing severe liver injury and thus should never be used for treatment of latent TB.[8,78,79]

Management with Missed Doses or Treatment Interruption

If interruptions were frequent or prolonged enough to preclude completion of treatment within the recommended time frame, therapy should be extended or restarted. When treatment has been interrupted for more than 2 months, the patient should be reevaluated for active tuberculosis.
Considerations in Special Populations

LTBI in Pregnancy

Screening for LTBI in Pregnancy

All pregnant people with HIV who have not had previous screening for LTBI (or who are at high risk of exposure to individuals with active tuberculosis) should have testing for LTBI during pregnancy.[8] Although data remain conflicting if the pregnancy stage affects both TST and IGRA testing,[80, 81, 82] either test is considered appropriate for screening in pregnancy.

Treatment of LTBI in Pregnancy

Based on studies that demonstrated adverse pregnancy outcomes in individuals with HIV who received isoniazid for LTBI treatment during pregnancy, the Adult and Adolescent OI Guidelines now recommend delaying isoniazid LTBI until the postpartum period, unless the pregnant person reports significant close contact with an active TB case or the clinician believes that the risk of developing active TB outweighs the risk of adverse birth outcomes.[8, 83] Although isoniazid is not considered teratogenic, data from two randomized-controlled trials suggest that persons who are pregnant or in the postpartum period may have a higher risk for isoniazid-associated hepatotoxicity.[83, 84] In contrast, two recent observational studies from South Africa have demonstrated no hepatotoxicity and improved pregnancy outcomes in women with HIV on antiretroviral therapy who are given isoniazid for LTBI.[85, 86] If LTBI therapy is required during pregnancy, the recommended regimen is isoniazid, given with pyridoxine.[8] There are inadequate data for the use of rifampin or rifapentine in pregnancy. Although animal data with rifapentine suggest this medication may cause congenital malformations and fetal loss, a more recent Phase I/II study that evaluated the pharmacokinetics and safety of 3HP among pregnant women with or without HIV did not report any adverse drug-related adverse events.[87, 88, 89] In this same Phase I/II study, investigators found that women taking efavirenz had a higher clearance of rifapentine than expected during pregnancy.[89]

Treatment of LTBI in Persons with Liver Disease

Individuals with chronic liver disease are at increased risk of LTBI treatment-associated hepatitis. Active hepatitis and end-stage liver disease are relative contraindications for LTBI treatment. Isoniazid or rifampin have been used in this population in the setting of stable liver disease, but close clinical and laboratory monitoring is recommended.[90] In addition, management of LTBI in a patient with chronic liver disease should involve consultation with a tuberculosis expert.
Summary Points

- Despite a declining incidence of tuberculosis in the United States, individuals with HIV remain at significant risk for tuberculosis.
- Compared to people without HIV, individuals with HIV are at increased risk for tuberculosis, even when taking antiretroviral therapy.
- All individuals with HIV should undergo screening for LTBI at either the time of HIV diagnosis or entry into care.
- Testing for LTBI should be performed with either a tuberculin skin test or IGRA test. Limitations to tuberculin skin testing, when compared with IGRA testing, include the requirement for a second visit to read the test, lower specificity, and potentially lower sensitivity with advanced immunosuppression.
- Severe immunosuppression can lead to false-negative LTBI tests; therefore, LTBI screening should be repeated once CD4 counts increase to at least 200 cells/mm3 on antiretroviral treatment.
- All individuals with HIV and positive LTBI screening tests should receive LTBI treatment after active tuberculosis has been ruled out.
- All individuals with HIV who have recent exposure to a person with active tuberculosis should receive LTBI treatment, irrespective of tuberculin skin test and/or IGRA results.
- There are two preferred regimens for LTBI treatment in persons with HIV: a 3-month course of weekly isoniazid plus rifapentine (3HP) or a 3-month course of daily isoniazid plus rifampin (3HR). Whenever isoniazid is given, pyridoxine is also given to prevent the development of isoniazid-induced peripheral neuropathy.
- There are three alternative LTBI regimens for persons with HIV: daily isoniazid for 6 or 9 months (6H or 9H), a 4-month course of daily rifampin (4R), or a 1-month course of daily isoniazid plus rifapentine (1HP).
- Selection of an LTBI treatment regimen will depend on duration and frequency of the regimen, the likelihood of patient completion of the regimen, and drug interactions between the LTBI treatment medications and the antiretroviral regimen.
Citations

2. Centers for Disease Control (CDC). Health Disparities in TB 2013. [CDC] -

3. Centers for Disease Control and Prevention. TB Incidence in the United States, 1953-2013 Atlanta, Georgia: CDC; 2013. [CDC] -

22. Targeted tuberculin testing and treatment of latent tuberculosis infection. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. This is a Joint Statement of the American Thoracic Society (ATS) and the Centers for Disease Control and Prevention (CDC). This statement was endorsed by the Council of the Infectious Diseases Society of America. (IDSA), September 1999, and the sections of this statement. Am J Respir Crit Care Med. 2000;161:S221-47. [PubMed Abstract] -

59. Sterling TR, Scott NA, Miro JM, et al. Three months of weekly rifapentine and isoniazid for treatment of

[PubMed Abstract] -

82. Gupta A, Montepiedra G, Aaron L, et al. Isoniazid Preventive Therapy in HIV-Infected Pregnant and

88. Mathad JS, Savic RM, Britto P, et al. Rifapentine pharmacokinetics and safety in pregnant women with and without HIV on 3HP. Conference on Retroviruses and Opportunistic Infections 2020; Boston, MA. Abstract 144.

References

 [PubMed Abstract] -

 [PubMed Abstract] -

 [PubMed Abstract] -

 [PubMed Abstract] -
Figures

Figure 1 Tuberculosis Cases in United States, 1980-2021

Source: Centers for Disease Control (CDC). Reported Tuberculosis in the United States, 2019 Atlanta, GA: U.S. Department of Health and Human Services, CDC.
Figure 2 Tuberculosis Case Rates per 100,000 Population among U.S.-Born versus Non-U.S.-Born, 1993-2021

Source: Centers for Disease Control (CDC). Reported Tuberculosis in the United States, 2019 Atlanta, GA: U.S. Department of Health and Human Services, CDC.
Figure 3 Tuberculosis Case Rates in United States—2021, by Race

Note these data are in categories of Hispanic ethnicity (Hispanic/Latino) and non-Hispanic race (White, Multiple races, American Indian/Alaska Native, Black/African American, Asian, and Native Hawaiian/Other Pacific Islander).

Source: Centers for Disease Control (CDC). Reported Tuberculosis in the United States, 2019 Atlanta, GA: U.S. Department of Health and Human Services, CDC.
Figure 4 Tuberculosis Cases among Persons with HIV—United States, 1993-2021

This graphic shows the number of persons diagnosed with tuberculosis who had HIV coinfection. These data are from tuberculosis cases in which an HIV test result was reported. California began reporting HIV test results to the CDC in 2011. Consequently, 2011 was the first year in which HIV status was 90% or greater complete.

Source: Centers for Disease Control (CDC). Reported Tuberculosis in the United States, 2019 Atlanta, GA: U.S. Department of Health and Human Services, CDC.
Figure 5 Percentage of Tuberculosis Cases in Persons Coinfected with HIV—United States, 1993-2021

This graphic shows the proportion of persons diagnosed with tuberculosis who had HIV coinfection. The data shown is from tuberculosis cases in which an HIV test result was reported. California began reporting HIV test results to the CDC in 2011. Consequently, 2011 was the first year in which HIV status was 90% or greater complete.

Source: Centers for Disease Control (CDC). Reported Tuberculosis in the United States, 2019 Atlanta, GA: U.S. Department of Health and Human Services, CDC.
Figure 6 Interrelationship of Host Immune Control in Person with LTBI

This graphic shows the impact of HIV-related immunosuppression on the course of latent tuberculosis infection. With progressive HIV-related immune suppression, mycobacterial load increases and symptomatic tuberculosis may develop. In contrast, taking antiretroviral therapy will restore some HIV-related immune suppression and contribute to immune control of *Mycobacterium tuberculosis*.

Figure 7 Mantoux Tuberculin Skin Test

The standard Mantoux tuberculin skin test is performed by injecting 0.1 mL of 5 tuberculin purified protein derivative (PPD) units of liquid tuberculin between the layers of the skin (intradermally) on the volar surface of the forearm.

Source: Centers for Disease Control and Prevention (CDC)
Figure 8 Reading a Tuberculin Skin Test

The Mantoux tuberculin skin test should be read 48 to 72 hours after the intradermal administration of the purified protein derivative. The transverse diameter of cutaneous induration (not erythema) should be measured. Use a reliable method to determine the edge of the induration on one side and mark this (black dot shown here); then do the exact same thing on the opposite side. Using a millimeter ruler, measure the distance between the two dots and that is the size in mm for the test result. In the example shown the induration is 11 mm.

Source: Centers for Disease Control and Prevention (CDC)
Figure 9 Interferon-Gamma Release Assays (IGRAs)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Quantiferon-TB Gold Plus</th>
<th>T-SPOT.TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>Process whole blood within 16 hours</td>
<td>Process peripheral blood mononuclear cells (PBMCs) within 8 hours</td>
</tr>
<tr>
<td>M. tuberculosis Antigen</td>
<td>Single mixture of synthetic peptides representing ESAT-6 and CFP-10</td>
<td>Separate mixtures of synthetic peptides representing ESAT-6 and CFP-10</td>
</tr>
<tr>
<td>Measurement</td>
<td>IFN-gamma concentration</td>
<td>Number of IFN-gamma producing cells (spots)</td>
</tr>
<tr>
<td>Possible Results</td>
<td>Positive, negative, indeterminate</td>
<td>Positive, negative, indeterminate, borderline</td>
</tr>
</tbody>
</table>

Abbreviations: CFP-10 = culture filtrate protein 10; ESAT-6 = early secretory antigenic target-6; IFN = interferon
Figure 10 QuantiFERON-TB Gold Plus Blood Draw Tubes

The QuantiFERON-TB Gold utilizes four tubes and 1 mL of blood is required for each tube: (1) the gray top Nil tube that serves as a negative control to adjust for background interferon gamma production; (2) the green top TB1 tube that primarily detects CD4 T-lymphocytes responses to mycobacterial antigens; (3) the yellow top TB2 tube that is optimized for detection of CD4 and CD8 T-lymphocyte responses to mycobacterial antigens; and (4) the purple top Mitogen tube that functions as a positive control to confirm baseline immune status; a low response may indicate inability to generate interferon gamma.

Source: Qiagen
Figure 11 Interpretation Criteria for QuantiFERON-TB Gold Plus (QFT-Plus)

Source: Qiagen
Figure 12 Interpretation of T-SPOT Results

Results are interpreted by subtracting the spot count in the negative (Nil) control from the spot count in Panels A and B. The test is considered positive if Panel A minus Nil and/or Panel B minus Nil is 8 or more spots. The test is considered negative if both Panel A minus Nil and Panel B minus Nil is less than or equal to 4 spots. The test is considered borderline (equivocal) if the highest of the Panel A or Panel B spot count is such that the (Panel minus Nil) spot count is 5, 6, or 7 spots.

Source: Oxford Immunotec. T-SPOT.TB. Prescribing Information.
Figure 13 Interpretation Criteria for the T-SPOT.TB Test (T-Spot)

Table 1. **Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV**

Treating Latent Tuberculosis Infection (LTBI) in People with HIV

Indications

- Positive screening test (tuberculin skin test or IGRA) for latent tuberculosis infection, no evidence of active TB disease, and no prior history of treatment for active disease or latent TB infection (AI);
- Close contact with a person with infectious TB, regardless of screening test result (AII)

Preferred Drugs for Treatment of Latent Tuberculosis Infection

1. **3HP: Weekly Isoniazid plus Rifapentine for 3 Months (AI)**
 - Isoniazid: 15 mg/kg PO once weekly (900 mg maximum dose) plus pyridoxine 50 mg once weekly for 12 weeks.
 - Rifapentine: weight-based dosing (750 mg PO weekly for weight 32.1-49.9 kg and 900 mg PO weekly for weight ≥50 kg) for 12 weeks. Note: rifapentine is recommended only for virally-suppressed individuals receiving an antiretroviral regimen that has one of the following anchor drugs—efavirenz, raltegravir, or once-daily dolutegravir (AI). In addition, the use of tenofovir alafenamide with rifapentine is not recommended, unless the benefits outweigh the risks.

2. **3HR: Daily Isoniazid plus Rifampin for 3 Months (AI)**
 - Isoniazid: 300 mg PO daily plus pyridoxine 25-50 mg PO daily for 3 months.
 - Rifampin: 600 mg PO daily for 3 months. Note: when using rifampin for LTBI treatment, either dose adjustment or substitution of key antiretroviral medications may be needed. Note: rifampin is not recommended for use with doravirine, etravirine, rilpivirine, bictegravir, cabotegravir, elvitegravir-cobicistat, or any HIV protease inhibitor. Doses of dolutegravir, raltegravir, and maraviroc need to be adjusted when used with rifampin.

3. **6H/9H: Daily Isoniazid for 6 to 9 Months (AII)**
 - Isoniazid: 300 mg PO daily plus pyridoxine 25-50 mg PO daily for 6 to 9 months. Note: this regimen is particularly useful as an alternative when drug-drug interactions between rifamycins and antiretroviral regimens limit the use of rifamycin-containing LTBI therapies.

4. **4R: Daily Rifampin for 4 Months (BI)**
 - Rifampin: 600 mg PO daily for 4 months. Note: when using rifampin for LTBI treatment, either dose adjustment or substitution of key antiretroviral medications may be needed.

5. **1HP: Daily Isoniazid plus Rifapentine for 1 Month (BI)**
 - Isoniazid 300 mg PO daily plus pyridoxine 25-50 mg PO daily for 4 weeks.
 - Rifapentine (weight-based) PO daily for 4 weeks—this regimen should only be used for individuals receiving an antiretroviral regimen of efavirenz (600 mg once daily) in combination with tenofovir DF-emtricitabine or abacavir-lamivudine. The daily rifapentine weight-based doses are:
 - 300 mg for persons weighing <35 kg
 - 450 mg for persons weighing 35-45 kg
 - 600 mg for persons weighing >45 kg

Alternative Drugs for Treatment of Latent Tuberculosis

6. **6H/9H: Daily Isoniazid for 6 to 9 Months (AII)**
 - Isoniazid: 300 mg PO daily plus pyridoxine 25-50 mg PO daily for 6 to 9 months. Note: this regimen is particularly useful as an alternative when drug-drug interactions between rifamycins and antiretroviral regimens limit the use of rifamycin-containing LTBI therapies.

Suspected Drug-Resistant TB

For persons exposed to drug-resistant TB, select drugs for prevention of TB after consultation with experts.
and with public health authorities (AIII)

<table>
<thead>
<tr>
<th>Strength of Recommendation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Strong recommendation for the statement</td>
</tr>
<tr>
<td>B</td>
<td>Moderate recommendation for the statement</td>
</tr>
<tr>
<td>C</td>
<td>Optional recommendation for the statement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality of Evidence for the Recommendation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>One or more randomized trials with clinical outcomes and/or validated laboratory endpoints</td>
</tr>
<tr>
<td>II</td>
<td>One or more well-designed, non-randomized trials or observational cohort studies with long-term clinical outcomes</td>
</tr>
<tr>
<td>III</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

Source:
